0

Merge pull request #90 from mendableai/llm-extraction

feat: LLM Extraction (mvp)
This commit is contained in:
Nicolas 2024-04-30 16:57:54 -07:00 committed by GitHub
commit 2f2b83b5ee
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 635 additions and 272 deletions

View File

@ -46,11 +46,12 @@
"@bull-board/api": "^5.14.2",
"@bull-board/express": "^5.8.0",
"@devil7softwares/pos": "^1.0.2",
"@dqbd/tiktoken": "^1.0.7",
"@dqbd/tiktoken": "^1.0.13",
"@logtail/node": "^0.4.12",
"@nangohq/node": "^0.36.33",
"@sentry/node": "^7.48.0",
"@supabase/supabase-js": "^2.7.1",
"ajv": "^8.12.0",
"async": "^3.2.5",
"async-mutex": "^0.4.0",
"axios": "^1.3.4",
@ -68,6 +69,7 @@
"gpt3-tokenizer": "^1.1.5",
"ioredis": "^5.3.2",
"joplin-turndown-plugin-gfm": "^1.0.12",
"json-schema-to-zod": "^2.1.0",
"keyword-extractor": "^0.0.25",
"langchain": "^0.1.25",
"languagedetect": "^2.0.0",
@ -93,7 +95,9 @@
"unstructured-client": "^0.9.4",
"uuid": "^9.0.1",
"wordpos": "^2.1.0",
"xml2js": "^0.6.2"
"xml2js": "^0.6.2",
"zod": "^3.23.4",
"zod-to-json-schema": "^3.23.0"
},
"nodemonConfig": {
"ignore": [

View File

@ -21,7 +21,7 @@ dependencies:
specifier: ^1.0.2
version: 1.0.2
'@dqbd/tiktoken':
specifier: ^1.0.7
specifier: ^1.0.13
version: 1.0.13
'@logtail/node':
specifier: ^0.4.12
@ -35,6 +35,9 @@ dependencies:
'@supabase/supabase-js':
specifier: ^2.7.1
version: 2.39.7
ajv:
specifier: ^8.12.0
version: 8.12.0
async:
specifier: ^3.2.5
version: 3.2.5
@ -86,6 +89,9 @@ dependencies:
joplin-turndown-plugin-gfm:
specifier: ^1.0.12
version: 1.0.12
json-schema-to-zod:
specifier: ^2.1.0
version: 2.1.0
keyword-extractor:
specifier: ^0.0.25
version: 0.0.25
@ -164,6 +170,12 @@ dependencies:
xml2js:
specifier: ^0.6.2
version: 0.6.2
zod:
specifier: ^3.23.4
version: 3.23.4
zod-to-json-schema:
specifier: ^3.23.0
version: 3.23.0(zod@3.23.4)
devDependencies:
'@flydotio/dockerfile':
@ -1200,7 +1212,7 @@ packages:
redis: 4.6.13
typesense: 1.7.2(@babel/runtime@7.24.0)
uuid: 9.0.1
zod: 3.22.4
zod: 3.23.4
transitivePeerDependencies:
- encoding
dev: false
@ -1218,8 +1230,8 @@ packages:
p-queue: 6.6.2
p-retry: 4.6.2
uuid: 9.0.1
zod: 3.22.4
zod-to-json-schema: 3.22.4(zod@3.22.4)
zod: 3.23.4
zod-to-json-schema: 3.23.0(zod@3.23.4)
dev: false
/@langchain/openai@0.0.18:
@ -1229,8 +1241,8 @@ packages:
'@langchain/core': 0.1.43
js-tiktoken: 1.0.10
openai: 4.28.4
zod: 3.22.4
zod-to-json-schema: 3.22.4(zod@3.22.4)
zod: 3.23.4
zod-to-json-schema: 3.23.0(zod@3.23.4)
transitivePeerDependencies:
- encoding
dev: false
@ -1811,6 +1823,15 @@ packages:
humanize-ms: 1.2.1
dev: false
/ajv@8.12.0:
resolution: {integrity: sha512-sRu1kpcO9yLtYxBKvqfTeh9KzZEwO3STyX1HT+4CaDzC6HpTGYhIhPIzj9XuKU7KYDwnaeh5hcOwjy1QuJzBPA==}
dependencies:
fast-deep-equal: 3.1.3
json-schema-traverse: 1.0.0
require-from-string: 2.0.2
uri-js: 4.4.1
dev: false
/ansi-escapes@4.3.2:
resolution: {integrity: sha512-gKXj5ALrKWQLsYG9jlTRmR/xKluxHV+Z9QEwNIgCfM1/uwPMCuzVVnh5mwTd+OuBZcwSIMbqssNWRm1lE51QaQ==}
engines: {node: '>=8'}
@ -2917,6 +2938,10 @@ packages:
- supports-color
dev: false
/fast-deep-equal@3.1.3:
resolution: {integrity: sha512-f3qQ9oQy9j2AhBe/H9VC91wLmKBCCU/gDOnKNAYG5hswO7BLKj09Hc5HYNz9cGI++xlpDCIgDaitVs03ATR84Q==}
dev: false
/fast-fifo@1.3.2:
resolution: {integrity: sha512-/d9sfos4yxzpwkDkuN7k2SqFKtYNmCTzgfEpz82x34IM9/zc8KGxQoXg1liNC/izpRM/MBdt44Nmx41ZWqk+FQ==}
dev: false
@ -3985,6 +4010,15 @@ packages:
/json-parse-even-better-errors@2.3.1:
resolution: {integrity: sha512-xyFwyhro/JEof6Ghe2iz2NcXoj2sloNsWr/XsERDK/oiPCfaNhl5ONfp+jQdAZRQQ0IJWNzH9zIZF7li91kh2w==}
/json-schema-to-zod@2.1.0:
resolution: {integrity: sha512-7ishNgYY+AbIKeeHcp5xCOdJbdVwSfDx/4V2ktc16LUusCJJbz2fEKdWUmAxhKIiYzhZ9Fp4E8OsAoM/h9cOLA==}
hasBin: true
dev: false
/json-schema-traverse@1.0.0:
resolution: {integrity: sha512-NM8/P9n3XjXhIZn1lLhkFaACTOURQXjWhV4BA/RnOv8xvgqtqpAX9IO4mRQxSx1Rlo4tqzeqb0sOlruaOy3dug==}
dev: false
/json5@2.2.3:
resolution: {integrity: sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg==}
engines: {node: '>=6'}
@ -4209,8 +4243,8 @@ packages:
redis: 4.6.13
uuid: 9.0.1
yaml: 2.4.1
zod: 3.22.4
zod-to-json-schema: 3.22.4(zod@3.22.4)
zod: 3.23.4
zod-to-json-schema: 3.23.0(zod@3.23.4)
transitivePeerDependencies:
- '@aws-crypto/sha256-js'
- '@aws-sdk/client-bedrock-agent-runtime'
@ -5069,7 +5103,7 @@ packages:
sbd: 1.0.19
typescript: 5.4.5
uuid: 9.0.1
zod: 3.22.4
zod: 3.23.4
transitivePeerDependencies:
- debug
dev: false
@ -5250,6 +5284,11 @@ packages:
resolution: {integrity: sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==}
engines: {node: '>=0.10.0'}
/require-from-string@2.0.2:
resolution: {integrity: sha512-Xf0nWe6RseziFMu+Ap9biiUbmplq6S9/p+7w7YXP/JBHhrUDDUhwa+vANyubuqfZWTveU//DYVGsDG7RKL/vEw==}
engines: {node: '>=0.10.0'}
dev: false
/resolve-cwd@3.0.0:
resolution: {integrity: sha512-OrZaX2Mb+rJCpH/6CpSqt9xFVpN++x01XnN2ie9g6P5/3xelLAkXWVADpdz1IHD/KFfEXyE6V0U01OQ3UO2rEg==}
engines: {node: '>=8'}
@ -5956,6 +5995,12 @@ packages:
picocolors: 1.0.0
dev: true
/uri-js@4.4.1:
resolution: {integrity: sha512-7rKUyy33Q1yc98pQ1DAmLtwX109F7TIfWlW1Ydo8Wl1ii1SeHieeh0HHfPeL2fMXK6z0s8ecKs9frCuLJvndBg==}
dependencies:
punycode: 2.3.1
dev: false
/urlpattern-polyfill@10.0.0:
resolution: {integrity: sha512-H/A06tKD7sS1O1X2SshBVeA5FLycRpjqiBeqGKmBwBDBy28EnRjORxTNe269KSSr5un5qyWi1iL61wLxpd+ZOg==}
dev: false
@ -6185,14 +6230,18 @@ packages:
engines: {node: '>=10'}
dev: true
/zod-to-json-schema@3.22.4(zod@3.22.4):
resolution: {integrity: sha512-2Ed5dJ+n/O3cU383xSY28cuVi0BCQhF8nYqWU5paEpl7fVdqdAmiLdqLyfblbNdfOFwFfi/mqU4O1pwc60iBhQ==}
/zod-to-json-schema@3.23.0(zod@3.23.4):
resolution: {integrity: sha512-az0uJ243PxsRIa2x1WmNE/pnuA05gUq/JB8Lwe1EDCCL/Fz9MgjYQ0fPlyc2Tcv6aF2ZA7WM5TWaRZVEFaAIag==}
peerDependencies:
zod: ^3.22.4
zod: ^3.23.3
dependencies:
zod: 3.22.4
zod: 3.23.4
dev: false
/zod@3.22.4:
resolution: {integrity: sha512-iC+8Io04lddc+mVqQ9AZ7OQ2MrUKGN+oIQyq1vemgt46jwCwLfhq7/pwnBnNXXXZb8VTVLKwp9EDkx+ryxIWmg==}
dev: false
/zod@3.23.4:
resolution: {integrity: sha512-/AtWOKbBgjzEYYQRNfoGKHObgfAZag6qUJX1VbHo2PRBgS+wfWagEY2mizjfyAPcGesrJOcx/wcl0L9WnVrHFw==}
dev: false

View File

@ -199,7 +199,8 @@ describe("E2E Tests for API Routes with No Authentication", () => {
expect(completedResponse.body.data[0]).toHaveProperty("content");
expect(completedResponse.body.data[0]).toHaveProperty("markdown");
expect(completedResponse.body.data[0]).toHaveProperty("metadata");
expect(completedResponse.body.data[0].content).toContain("🔥 FireCrawl");
}, 60000); // 60 seconds
});

View File

@ -252,6 +252,121 @@ const TEST_URL = "http://127.0.0.1:3002";
}, 60000); // 60 seconds
});
describe("POST /v0/scrape with LLM Extraction", () => {
it("should extract data using LLM extraction mode", async () => {
const response = await request(TEST_URL)
.post("/v0/scrape")
.set("Authorization", `Bearer ${process.env.TEST_API_KEY}`)
.set("Content-Type", "application/json")
.send({
url: "https://mendable.ai",
pageOptions: {
onlyMainContent: true
},
extractorOptions: {
mode: "llm-extraction",
extractionPrompt: "Based on the information on the page, find what the company's mission is and whether it supports SSO, and whether it is open source",
extractionSchema: {
type: "object",
properties: {
company_mission: {
type: "string"
},
supports_sso: {
type: "boolean"
},
is_open_source: {
type: "boolean"
}
},
required: ["company_mission", "supports_sso", "is_open_source"]
}
}
});
// Ensure that the job was successfully created before proceeding with LLM extraction
expect(response.statusCode).toBe(200);
// Assuming the LLM extraction object is available in the response body under `data.llm_extraction`
let llmExtraction = response.body.data.llm_extraction;
// Check if the llm_extraction object has the required properties with correct types and values
expect(llmExtraction).toHaveProperty("company_mission");
expect(typeof llmExtraction.company_mission).toBe("string");
expect(llmExtraction).toHaveProperty("supports_sso");
expect(llmExtraction.supports_sso).toBe(true);
expect(typeof llmExtraction.supports_sso).toBe("boolean");
expect(llmExtraction).toHaveProperty("is_open_source");
expect(llmExtraction.is_open_source).toBe(false);
expect(typeof llmExtraction.is_open_source).toBe("boolean");
}, 60000); // 60 secs
});
// describe("POST /v0/scrape for Top 100 Companies", () => {
// it("should extract data for the top 100 companies", async () => {
// const response = await request(TEST_URL)
// .post("/v0/scrape")
// .set("Authorization", `Bearer ${process.env.TEST_API_KEY}`)
// .set("Content-Type", "application/json")
// .send({
// url: "https://companiesmarketcap.com/",
// pageOptions: {
// onlyMainContent: true
// },
// extractorOptions: {
// mode: "llm-extraction",
// extractionPrompt: "Extract the name, market cap, price, and today's change for the top 20 companies listed on the page.",
// extractionSchema: {
// type: "object",
// properties: {
// companies: {
// type: "array",
// items: {
// type: "object",
// properties: {
// rank: { type: "number" },
// name: { type: "string" },
// marketCap: { type: "string" },
// price: { type: "string" },
// todayChange: { type: "string" }
// },
// required: ["rank", "name", "marketCap", "price", "todayChange"]
// }
// }
// },
// required: ["companies"]
// }
// }
// });
// // Print the response body to the console for debugging purposes
// console.log("Response companies:", response.body.data.llm_extraction.companies);
// // Check if the response has the correct structure and data types
// expect(response.status).toBe(200);
// expect(Array.isArray(response.body.data.llm_extraction.companies)).toBe(true);
// expect(response.body.data.llm_extraction.companies.length).toBe(40);
// // Sample check for the first company
// const firstCompany = response.body.data.llm_extraction.companies[0];
// expect(firstCompany).toHaveProperty("name");
// expect(typeof firstCompany.name).toBe("string");
// expect(firstCompany).toHaveProperty("marketCap");
// expect(typeof firstCompany.marketCap).toBe("string");
// expect(firstCompany).toHaveProperty("price");
// expect(typeof firstCompany.price).toBe("string");
// expect(firstCompany).toHaveProperty("todayChange");
// expect(typeof firstCompany.todayChange).toBe("string");
// }, 120000); // 120 secs
// });
describe("GET /is-production", () => {
it("should return the production status", async () => {
const response = await request(TEST_URL).get("/is-production");

View File

@ -1,3 +1,4 @@
import { ExtractorOptions } from './../lib/entities';
import { Request, Response } from "express";
import { WebScraperDataProvider } from "../scraper/WebScraper";
import { billTeam, checkTeamCredits } from "../services/billing/credit_billing";
@ -6,12 +7,14 @@ import { RateLimiterMode } from "../types";
import { logJob } from "../services/logging/log_job";
import { Document } from "../lib/entities";
import { isUrlBlocked } from "../scraper/WebScraper/utils/blocklist"; // Import the isUrlBlocked function
import { numTokensFromString } from '../lib/LLM-extraction/helpers';
export async function scrapeHelper(
req: Request,
team_id: string,
crawlerOptions: any,
pageOptions: any
pageOptions: any,
extractorOptions: ExtractorOptions
): Promise<{
success: boolean;
error?: string;
@ -27,6 +30,7 @@ export async function scrapeHelper(
return { success: false, error: "Firecrawl currently does not support social media scraping due to policy restrictions. We're actively working on building support for it.", returnCode: 403 };
}
const a = new WebScraperDataProvider();
await a.setOptions({
mode: "single_urls",
@ -35,6 +39,7 @@ export async function scrapeHelper(
...crawlerOptions,
},
pageOptions: pageOptions,
extractorOptions: extractorOptions
});
const docs = await a.getDocuments(false);
@ -46,9 +51,17 @@ export async function scrapeHelper(
return { success: true, error: "No page found", returnCode: 200 };
}
let creditsToBeBilled = filteredDocs.length;
const creditsPerLLMExtract = 5;
if (extractorOptions.mode === "llm-extraction"){
creditsToBeBilled = creditsToBeBilled + (creditsPerLLMExtract * filteredDocs.length)
}
const billingResult = await billTeam(
team_id,
filteredDocs.length
creditsToBeBilled
);
if (!billingResult.success) {
return {
@ -79,6 +92,9 @@ export async function scrapeController(req: Request, res: Response) {
}
const crawlerOptions = req.body.crawlerOptions ?? {};
const pageOptions = req.body.pageOptions ?? { onlyMainContent: false };
const extractorOptions = req.body.extractorOptions ?? {
mode: "markdown"
}
const origin = req.body.origin ?? "api";
try {
@ -96,10 +112,13 @@ export async function scrapeController(req: Request, res: Response) {
req,
team_id,
crawlerOptions,
pageOptions
pageOptions,
extractorOptions
);
const endTime = new Date().getTime();
const timeTakenInSeconds = (endTime - startTime) / 1000;
const numTokens = (result.data && result.data.markdown) ? numTokensFromString(result.data.markdown, "gpt-3.5-turbo") : 0;
logJob({
success: result.success,
message: result.error,
@ -112,6 +131,8 @@ export async function scrapeController(req: Request, res: Response) {
crawlerOptions: crawlerOptions,
pageOptions: pageOptions,
origin: origin,
extractor_options: extractorOptions,
num_tokens: numTokens
});
return res.status(result.returnCode).json(result);
} catch (error) {

View File

@ -0,0 +1,16 @@
import { encoding_for_model } from "@dqbd/tiktoken";
import { TiktokenModel } from "@dqbd/tiktoken";
// This function calculates the number of tokens in a text string using GPT-3.5-turbo model
export function numTokensFromString(message: string, model: string): number {
const encoder = encoding_for_model(model as TiktokenModel);
// Encode the message into tokens
const tokens = encoder.encode(message);
// Free the encoder resources after use
encoder.free();
// Return the number of tokens
return tokens.length;
}

View File

@ -0,0 +1,51 @@
import Turndown from "turndown";
import OpenAI from "openai";
import Ajv from "ajv";
const ajv = new Ajv(); // Initialize AJV for JSON schema validation
import { generateOpenAICompletions } from "./models";
import { Document, ExtractorOptions } from "../entities";
// Generate completion using OpenAI
export async function generateCompletions(
documents: Document[],
extractionOptions: ExtractorOptions
): Promise<Document[]> {
// const schema = zodToJsonSchema(options.schema)
const schema = extractionOptions.extractionSchema;
const prompt = extractionOptions.extractionPrompt;
const switchVariable = "openAI"; // Placholder, want to think more about how we abstract the model provider
const completions = await Promise.all(
documents.map(async (document: Document) => {
switch (switchVariable) {
case "openAI":
const llm = new OpenAI();
const completionResult = await generateOpenAICompletions({
client: llm,
document: document,
schema: schema,
prompt: prompt,
});
// Validate the JSON output against the schema using AJV
const validate = ajv.compile(schema);
if (!validate(completionResult.llm_extraction)) {
//TODO: add Custom Error handling middleware that bubbles this up with proper Error code, etc.
throw new Error(
`JSON parsing error(s): ${validate.errors
?.map((err) => err.message)
.join(", ")}\n\nLLM extraction did not match the extraction schema you provided. This could be because of a model hallucination, or an Error on our side. Try adjusting your prompt, and if it doesn't work reach out to support.`
);
}
return completionResult;
default:
throw new Error("Invalid client");
}
})
);
return completions;
}

View File

@ -0,0 +1,76 @@
import OpenAI from "openai";
import { Document } from "../../lib/entities";
export type ScraperCompletionResult = {
data: any | null;
url: string;
};
const defaultPrompt =
"You are a professional web scraper. Extract the contents of the webpage";
function prepareOpenAIDoc(
document: Document
): OpenAI.Chat.Completions.ChatCompletionContentPart[] {
// Check if the markdown content exists in the document
if (!document.markdown) {
throw new Error(
"Markdown content is missing in the document. This is likely due to an error in the scraping process. Please try again or reach out to help@mendable.ai"
);
}
return [{ type: "text", text: document.markdown }];
}
export async function generateOpenAICompletions({
client,
model = "gpt-4-turbo",
document,
schema, //TODO - add zod dynamic type checking
prompt = defaultPrompt,
temperature,
}: {
client: OpenAI;
model?: string;
document: Document;
schema: any; // This should be replaced with a proper Zod schema type when available
prompt?: string;
temperature?: number;
}): Promise<Document> {
const openai = client as OpenAI;
const content = prepareOpenAIDoc(document);
const completion = await openai.chat.completions.create({
model,
messages: [
{
role: "system",
content: prompt,
},
{ role: "user", content },
],
tools: [
{
type: "function",
function: {
name: "extract_content",
description: "Extracts the content from the given webpage(s)",
parameters: schema,
},
},
],
tool_choice: "auto",
temperature,
});
const c = completion.choices[0].message.tool_calls[0].function.arguments;
// Extract the LLM extraction content from the completion response
const llmExtraction = JSON.parse(c);
// Return the document with the LLM extraction content added
return {
...document,
llm_extraction: llmExtraction,
};
}

View File

@ -16,6 +16,12 @@ export type PageOptions = {
};
export type ExtractorOptions = {
mode: "markdown" | "llm-extraction";
extractionPrompt?: string;
extractionSchema?: Record<string, any>;
}
export type SearchOptions = {
limit?: number;
tbs?: string;
@ -38,6 +44,7 @@ export type WebScraperOptions = {
replaceAllPathsWithAbsolutePaths?: boolean;
};
pageOptions?: PageOptions;
extractorOptions?: ExtractorOptions;
concurrentRequests?: number;
};
@ -50,6 +57,8 @@ export class Document {
url?: string; // Used only in /search for now
content: string;
markdown?: string;
html?: string;
llm_extraction?: Record<string, any>;
createdAt?: Date;
updatedAt?: Date;
type?: string;

View File

@ -1,4 +1,4 @@
import { Document, PageOptions, WebScraperOptions } from "../../lib/entities";
import { Document, ExtractorOptions, PageOptions, WebScraperOptions } from "../../lib/entities";
import { Progress } from "../../lib/entities";
import { scrapSingleUrl } from "./single_url";
import { SitemapEntry, fetchSitemapData, getLinksFromSitemap } from "./sitemap";
@ -7,6 +7,9 @@ import { getValue, setValue } from "../../services/redis";
import { getImageDescription } from "./utils/imageDescription";
import { fetchAndProcessPdf } from "./utils/pdfProcessor";
import { replaceImgPathsWithAbsolutePaths, replacePathsWithAbsolutePaths } from "./utils/replacePaths";
import OpenAI from 'openai'
import { generateCompletions } from "../../lib/LLM-extraction";
export class WebScraperDataProvider {
private urls: string[] = [""];
@ -19,6 +22,7 @@ export class WebScraperDataProvider {
private concurrentRequests: number = 20;
private generateImgAltText: boolean = false;
private pageOptions?: PageOptions;
private extractorOptions?: ExtractorOptions;
private replaceAllPathsWithAbsolutePaths?: boolean = false;
private generateImgAltTextModel: "gpt-4-turbo" | "claude-3-opus" = "gpt-4-turbo";
@ -36,8 +40,7 @@ export class WebScraperDataProvider {
): Promise<Document[]> {
const totalUrls = urls.length;
let processedUrls = 0;
console.log("Converting urls to documents");
console.log("Total urls", urls);
const results: (Document | null)[] = new Array(urls.length).fill(null);
for (let i = 0; i < urls.length; i += this.concurrentRequests) {
const batchUrls = urls.slice(i, i + this.concurrentRequests);
@ -192,6 +195,13 @@ export class WebScraperDataProvider {
documents = await this.getSitemapData(baseUrl, documents);
documents = documents.concat(pdfDocuments);
if(this.extractorOptions.mode === "llm-extraction") {
documents = await generateCompletions(
documents,
this.extractorOptions
)
}
await this.setCachedDocuments(documents);
documents = this.removeChildLinks(documents);
documents = documents.splice(0, this.limit);
@ -377,6 +387,7 @@ export class WebScraperDataProvider {
this.generateImgAltText =
options.crawlerOptions?.generateImgAltText ?? false;
this.pageOptions = options.pageOptions ?? {onlyMainContent: false};
this.extractorOptions = options.extractorOptions ?? {mode: "markdown"}
this.replaceAllPathsWithAbsolutePaths = options.crawlerOptions?.replaceAllPathsWithAbsolutePaths ?? false;
//! @nicolas, for some reason this was being injected and breakign everything. Don't have time to find source of the issue so adding this check

View File

@ -106,7 +106,6 @@ export async function scrapSingleUrl(
toMarkdown: boolean = true,
pageOptions: PageOptions = { onlyMainContent: true }
): Promise<Document> {
console.log(`Scraping URL: ${urlToScrap}`);
urlToScrap = urlToScrap.trim();
const removeUnwantedElements = (html: string, pageOptions: PageOptions) => {
@ -170,6 +169,8 @@ export async function scrapSingleUrl(
}
break;
}
//* TODO: add an optional to return markdown or structured/extracted content
let cleanedHtml = removeUnwantedElements(text, pageOptions);
return [await parseMarkdown(cleanedHtml), text];

View File

@ -1,3 +1,4 @@
import { ExtractorOptions } from './../../lib/entities';
import { supabase_service } from "../supabase";
import { FirecrawlJob } from "../../types";
import "dotenv/config";
@ -8,6 +9,8 @@ export async function logJob(job: FirecrawlJob) {
if (process.env.ENV !== "production") {
return;
}
const { data, error } = await supabase_service
.from("firecrawl_jobs")
.insert([
@ -23,6 +26,8 @@ export async function logJob(job: FirecrawlJob) {
crawler_options: job.crawlerOptions,
page_options: job.pageOptions,
origin: job.origin,
extractor_options: job.extractor_options,
num_tokens: job.num_tokens
},
]);
if (error) {

View File

@ -1,3 +1,5 @@
import { ExtractorOptions } from "./lib/entities";
export interface CrawlResult {
source: string;
content: string;
@ -37,6 +39,8 @@ export interface FirecrawlJob {
crawlerOptions?: any;
pageOptions?: any;
origin: string;
extractor_options?: ExtractorOptions,
num_tokens?: number
}
export enum RateLimiterMode {